Emergence of Network Motifs in Deep Neural Networks

Entropy (Basel). 2020 Feb 11;22(2):204. doi: 10.3390/e22020204.

Abstract

Network science can offer fundamental insights into the structural and functional properties of complex systems. For example, it is widely known that neuronal circuits tend to organize into basic functional topological modules, called network motifs. In this article, we show that network science tools can be successfully applied also to the study of artificial neural networks operating according to self-organizing (learning) principles. In particular, we study the emergence of network motifs in multi-layer perceptrons, whose initial connectivity is defined as a stack of fully-connected, bipartite graphs. Simulations show that the final network topology is shaped by learning dynamics, but can be strongly biased by choosing appropriate weight initialization schemes. Overall, our results suggest that non-trivial initialization strategies can make learning more effective by promoting the development of useful network motifs, which are often surprisingly consistent with those observed in general transduction networks.

Keywords: artificial neural networks; complex systems; deep learning; network motifs.