Spectroscopic, Theoretical and Antioxidant Study of 3d-Transition Metals (Co (II), Ni(II), Cu(II), Zn(II) Complexes with Cichoric Acid

Materials (Basel). 2020 Jul 11;13(14):3102. doi: 10.3390/ma13143102.

Abstract

Cichoric acid (CA) is a derivative of both caffeic acid and tartaric acid. It was isolated for the first time from Cichorium intybus L. (chicory) but it also occurs in significant amounts in Echinacea, particularly E. purpurea, dandelion leaves, basil, lemon balm and in aquatic plants, including algae and sea grasses. It has a wide spectrum of biological properties, including antioxidant, antiviral, anti-inflammatory and other. The work yielded cichoric acid complexes with selected transition metals, i.e., copper(II), nickel(II), zinc(II) and cobalt(II). In this work the dependency between the molecular structure and biological activity was discussed. The molecular structure was studied by means of infrared spectroscopy (Fourier transform infrared (FT-IR) Raman (FT-Raman)), electronic absorption spectroscopy (ultraviolet-visible (UV/VIS)) and theoretical calculations (density functional theory (DFT), Hartree-Fock (HF)). Understanding the mechanism of the effect of metals on the electronic system of ligands with biological importance will facilitate in the future the search for new, effective and natural antioxidants. The composition of the studied complexes in aqueous solutions was determined at a constant pH by the Job's method. Antioxidative properties of the tested compounds were determined using the ferric-reducing antioxidant power (FRAP), DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method), cupric-reducing antioxidant capacity (CUPRAC) and Superoxide Dismutase Activity Assay (SOD).

Keywords: antioxidant properties; caffeic acid; cichoric acid; metal complexes.