From In Vitro Data to In Vivo Interspecies Danger Communication: A Study of Chemosensing via the Mouse Grueneberg Ganglion

Animals (Basel). 2022 Feb 1;12(3):356. doi: 10.3390/ani12030356.

Abstract

In the wild, mice have developed survival strategies to detect volatile cues that warn them of potential danger. Specific olfactory neurons found in the Grueneberg ganglion olfactory subsystem can detect alarm pheromones emitted by stressed conspecifics, as well as kairomones involuntarily released by their predators. These volatile chemical cues allow intra- and interspecies communication of danger, respectively. Alarm pheromones, kairomones and bitter taste ligands share a common chemical motif containing sulfur or nitrogen. Interestingly, three specific bitter taste receptors (TAS2Rs) have been found in the Grueneberg ganglion neurons that are implicated in danger signalling pathways. We have recently developed a TAS2R-expressing heterologous system that mimics the Grueneberg ganglion neuron responses after kairomone stimulation. Here, we demonstrated by in vitro, ex vivo and in vivo experiments that the biological secretions from the raccoon (Procyon lotor) and the skunk (Mephitis mephitis) were acting as potent sources of kairomones. They activated the Grueneberg ganglion neurons and induced fear-related behaviours in mice. Identification of new sources of semiochemicals is a first step towards an understanding of the interspecies danger communication that takes place in the Grueneberg ganglion.

Keywords: Grueneberg ganglion; TAS2Rs; chemical communication; danger detection; kairomones; olfaction; predators.