Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste

Foods. 2021 Jan 2;10(1):76. doi: 10.3390/foods10010076.

Abstract

The high loss rate of bread is generally known to contribute to the alarmingly high numbers in worldwide food waste. Correct storage techniques are believed to enable the reduction of preventable food waste. Therefore, the influence of storage parameters on staling and spoilage behavior of German bread within the limits of common household methods was investigated in this study. The aim was to generate reliable data for staling and spoilage using different storage methods (PE-layered microperforated paper bag, plastic bag, and fridge and bread box) to bridge the gap between consumer's needs and scientific research questions. Everyday routines of life, such as visual inspection, were compared with microbiological techniques and were found to represent an adequate tool for microbial safety control. Visually undetectable fungal growth has not been found to result in the production of mycotoxins (fumonisins B1 and B2 and ochratoxin A) in quantifiable or harmful concentrations. Thus, disgust should prevent any foodborne health risks as the visual appearance should lead to avoiding the consumption of spoiled food before mycotoxins are produced in amounts causing adverse health effects within the limits of this experimental setup. Additionally, the storage temperature especially was found to influence the kinetics of staling processes, as a reduction accelerated the staling process. Further, crumb moisture loss was found to contradict a long shelf life but, on the other hand, an elevated humidity was shown to provoke excessive microbial growth and should therefore be observed when designing suitable storage methods. Further, the correct choice of the bread type stored and a good sanitary practice represent simply accessible ways to prolong the storage period of bread loaves.

Keywords: firming; food waste; household storage methods; mixed-type sourdough bread; mycotoxins; shelf life; sourdough; texture analysis; wheat pan bread.