A Simple Wireless Sensor Node System for Electricity Monitoring Applications: Design, Integration, and Testing with Different Piezoelectric Energy Harvesters

Sensors (Basel). 2018 Nov 2;18(11):3733. doi: 10.3390/s18113733.

Abstract

Real time electricity monitoring is critical to enable intelligent and customized energy management for users in residential, educational, and commercial buildings. This paper presents the design, integration, and testing of a simple, self-contained, low-power, non-invasive system at low cost applicable for such purpose. The system is powered by piezoelectric energy harvesters (EHs) based on PZT and includes a microcontroller unit (MCU) and a central hub. Real-time information regarding the electricity consumption is measured and communicated by the system, which ultimately offers a dependable and promising solution as a wireless sensor node. The dynamic power management ensures the system to work with different types of PZT EHs at a wide range of input power. Thus, the system is robust against fluctuation of the current in the electricity grid and requires minimum adjustment if EH unit requires exchange or upgrade. Experimental results demonstrate that this unit is in a position to read and transmit 60 Hz alternating current (AC) sensor signals with a high accuracy no less than 91.4%. The system is able to achieve an operation duty cycle from <1 min up to 18 min when the current in an electric wire varies from 7.6 A to 30 A, depending on the characteristics of different EHs and intensity of current being monitored.

Keywords: PZT; dynamic duty cycle; electricity monitoring; energy harvester; energy management; power conditioning circuit; screen-printing; self-contained system; wireless sensor node.