Effect of the Processing Parameters on the Fabrication of MgAl2O4 Foams

Materials (Basel). 2021 Oct 10;14(20):5945. doi: 10.3390/ma14205945.

Abstract

Stable MgAl2O4 foams (7-21 vol.%) were manufactured using a natural extract from the pericarp of the soap-nut fruit, saponin being the main component, as the foaming agent. The soap-nut extract is soluble in water, biodegradable, non-toxic, and has similar properties to commercial tensoactives. The stability and characteristics of the porous structure of the ceramic foams were evaluated in terms of the amount of foaming agent, content of MgAl2O4 particles, time and speed of stirring of the slurry, type of agitator, and drying temperature. It was found that the foaming capacity decreased with the percent of foaming agent and ceramic, whereas the time and speed of stirring enhanced the foamability. Foaming trials showed that stirring aqueous slurries with 3 wt.% of soap-nut extract for 2 min at 1070 or 2120 rpm, depending on the type of agitator, produced stable MgAl2O4 foams when drying at 60 °C. The mechanism of foaming is discussed. The foams were sintered at 1400 °C for 1 h under an Ar atmosphere. Observation of the sintered foam structures in the scanning electron microscope revealed nearly spherical cells with very good interconnectivity and strength to be manipulated, making them suitable as preforms for manufacturing Al-based composites by pressureless infiltration.

Keywords: MgAl2O4; foams; saponin; soap-nut extract; suspensions.