Measurement of ratios of νμ charged-current cross sections on C, Fe, and Pb to CH at neutrino energies 2-20 GeV

Phys Rev Lett. 2014 Jun 13;112(23):231801. doi: 10.1103/PhysRevLett.112.231801. Epub 2014 Jun 9.

Abstract

We present measurements of ν(μ) charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2<E(ν)<20 GeV, with ⟨E(ν)⟩ = 8 GeV, which have a reconstructed μ(-) scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy E(ν) and flux-integrated differential cross sections with respect to the Bjorken scaling variable x. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative depletion at low x and enhancement at large x. Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.