Identification, evolution, expression analysis of phospholipase D (PLD) gene family in tea (Camellia sinensis)

Physiol Mol Biol Plants. 2021 Jun;27(6):1219-1232. doi: 10.1007/s12298-021-01007-0. Epub 2021 May 29.

Abstract

Phospholipase D (PLD) (EC 3.1.4.4) plays important roles in plants growth, development, and response to environmental stresses. Tea plant (Camellia sinensis) is the most important non-alcoholic beverage in the world with health benefits, but tea production decreases in response to environmental stresses such as cold and drought. Therefore, a genome-wide analysis of the C. sinensis PLD gene family (CsPLDs) was carried out. In the current study, identification, evolutionary relationship, duplication, selection pressure, gene structure, promoter analysis, transcript-targeted miRNA, and simple sequence repeat markers prediction, RNA-seq data analysis, and three-dimensional structure of the CsPLDs have been investigated using bioinformatics tools. 15 PLDs were identified from the tea genome which belongs to five groups, including CsPLDα, CsPLDβ, CsPLDδ, CsPLDε, and CsPLDζ. Both segmental and tandem duplications have occurred in the CsPLD gene family. Ka/Ks ratio for the most duplicated pair genes was less than 1 which implies negative selection to conserve their function during the tea evolution. 68 cis-elements have been found in CsPLDs indicating the contribution of these genes in response to environmental stresses. Likewise, 72 SSR loci and 96 miRNA molecules in 14 and 15 CsPLDs have been detected. According to RNA-seq data, the highest expression in all tissues under various abiotic stresses was related to CsPLDα1. Besides, a three-dimensional structure of the CsPLDα1 was evaluated to better understand its biological activity. This research provides comprehensive information that could be useful in future studies to develop stress-tolerant tea.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-021-01007-0.

Keywords: Expression profile; Gene family; Selection pressure; Three-dimensional structure.