Enhanced pollutant photodegradation over nanoporous titanium-vanadium oxides with improved interfacial interactions

J Colloid Interface Sci. 2023 Sep 15:646:11-24. doi: 10.1016/j.jcis.2023.04.180. Epub 2023 May 5.

Abstract

This study addressed the separation problem of colloidal catalytic powder from its solution and pore blockage of traditional metallic oxides by fabricating nanoporous composites of titanium (Ti)-vanadium (V) oxide via magnetron sputtering, electrochemical anodization, and annealing processes. The effect of V-deposited loading on the composite semiconductors was investigated by varying V sputtering power (20-250 W) to correlate their physicochemical properties to the photodegradation performance of methylene blue. The obtained semiconductors revealed circular and elliptical pores (14-23 nm) and formed different metallic and metallic oxide crystalline phases. Within the nanoporous composite layer, V ions substituted Ti4+, leading to Ti3+ formation accompanied by decreased band gap values and higher visible-light absorption. Thus, the band gap of TiO2 was 3.15 eV, while that of Ti-V oxide with the maximum V content (at 250 W) was 2.47 eV. The interfacial separators between clusters in the mentioned composite created traps disrupting the charge carrier movements between crystallites, thereby decreasing the photoactivity. In contrast, the composite prepared with the minimum V content showed approximately 90% degradation efficiency under solar-simulated irradiation resulting from the homogeneous V dispersion and the lower recombination possibility, owing to its p-n heterojunction constituent. The nanoporous photocatalyst layers with their novel synthesis approach and outstanding performance can be applied in other environmental remediation applications.

Keywords: Anodization; Organic pollutant; Photocatalyst; Sputtering; Titanium-vanadium oxide.