Characterization of Polyurethane Foam Waste for Reuse in Eco-Efficient Building Materials

Polymers (Basel). 2019 Feb 19;11(2):359. doi: 10.3390/polym11020359.

Abstract

In the European Union, the demand for polyurethane is continually growing. In 2017, the estimated value of polyurethane production was 700,400 Tn, of which 27.3% is taken to landfill, which causes an environmental problem. In this paper, the behaviour of various polyurethane foams from the waste of different types of industries will be analyzed with the aim of assessing their potential use in construction materials. To achieve this, the wastes were chemically tested by means of CHNS, TGA, and leaching tests. They were tested microstructurally by means of SEM. The processing parameters of the waste was calculated after identifying its granulometry and its physical properties i.e., density and water absorption capacity. In addition, the possibility of incorporating these wastes in plaster matrices was studied by determining their rendering in an operational context, finding out their mechanical resistance to flexion and compression at seven days, their reaction to fire as well as their weight per unit of area, and their thermal behaviour. The results show that in all cases, the waste is inert and does not undergo leaching. The generation process of the waste determines the foam's microstructure in addition to its physical-chemical properties, which directly affect building materials in which they are included, thus offering different ways in which they can be applied.

Keywords: leaching test; microstructure; polymer waste; polyurethane foam.