Performance Limits of GNSS Code-based Precise Positioning: GPS, Galileo & Meta-Signals

Sensors (Basel). 2020 Apr 13;20(8):2196. doi: 10.3390/s20082196.

Abstract

This contribution analyzes the fundamental performance limits of traditional two-step Global Navigation Satellite System (GNSS) receiver architectures, which are directly linked to the achievable time-delay estimation performance. In turn, this is related to the GNSS baseband signal resolution, i.e., bandwidth, modulation, autocorrelation function, and the receiver sampling rate. To provide a comprehensive analysis of standard point positioning techniques, we consider the different GPS and Galileo signals available, as well as the signal combinations arising in the so-called GNSS meta-signal paradigm. The goal is to determine: (i) the ultimate achievable performance of GNSS code-based positioning systems; and (ii) whether we can obtain a GNSS code-only precise positioning solution and under which conditions. In this article, we provide clear answers to such fundamental questions, leveraging on the analysis of the Cramér-Rao bound (CRB) and the corresponding Maximum Likelihood Estimator (MLE). To determine such performance limits, we assume no external ionospheric, tropospheric, orbital, clock, or multipath-induced errors. The time-delay CRB and the corresponding MLE are obtained for the GPS L1 C/A, L1C, and L5 signals; the Galileo E1 OS, E6B, E5b-I, and E5 signals; and the Galileo E5b-E6 and E5a-E6 meta-signals. The results show that AltBOC-type signals (Galileo E5 and meta-signals) can be used for code-based precise positioning, being a promising real-time alternative to carrier phase-based techniques.

Keywords: Cramér–Rao bound; GNSS; GPS/Galileo signals; Galileo meta-signals; code-based positioning; maximum likelihood estimation; precise positioning; time-delay estimation.