Improving the Tensile and Tear Properties of Thermoplastic Starch/Dolomite Biocomposite Film through Sonication Process

Polymers (Basel). 2021 Jan 15;13(2):274. doi: 10.3390/polym13020274.

Abstract

In this work, dolomite filler was introduced into thermoplastic starch (TPS) matrix to form TPS-dolomite (TPS-DOL) biocomposites. TPS-DOL biocomposites were prepared at different dolomite loadings (1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt%) and by using two different forms of dolomite (pristine (DOL(P) and sonicated dolomite (DOL(U)) via the solvent casting technique. The effects of dolomite loading and sonication process on the mechanical properties of the TPS-DOL biocomposites were analyzed using tensile and tear tests. The chemistry aspect of the TPS-DOL biocomposites was analyzed using Fourier transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) analysis. According to the mechanical data, biocomposites with a high loading of dolomite (4 and 5 wt%) possess greater tensile and tear properties as compared to the biocomposites with a low loading of dolomite (1 and 2 wt%). Furthermore, it is also proved that the TPS-DOL(U) biocomposites have better mechanical properties when compared to the TPS-DOL(P) biocomposites. Reduction in the dolomite particle size upon the sonication process assisted in its dispersion and distribution throughout the TPS matrix. Thus, this led to the improvement of the tensile and tear properties of the biocomposite. Based on the findings, it is proven that the sonication process is a simple yet beneficial technique in the production of the TPS-dolomite biocomposites with improved tensile and tear properties for use as packaging film.

Keywords: biocomposite; dolomite; mechanical properties; sonication; thermoplastic starch.