Effects of Interfacial Passivation on the Electrical Performance, Stability, and Contact Properties of Solution Process Based ZnO Thin Film Transistors

Materials (Basel). 2018 Sep 18;11(9):1761. doi: 10.3390/ma11091761.

Abstract

This paper reports low temperature solution processed ZnO thin film transistors (TFTs), and the effects of interfacial passivation of a 4-chlorobenzoic acid (PCBA) layer on device performance. It was found that the ZnO TFTs with PCBA interfacial modification layers exhibited a higher electron mobility of 4.50 cm² V-1 s-1 compared to the pristine ZnO TFTs with a charge carrier mobility of 2.70 cm² V-1 s-1. Moreover, the ZnO TFTs with interfacial modification layers could significantly improve device shelf-life stability and bias stress stability compared to the pristine ZnO TFTs. Most importantly, interfacial modification layers could also decrease the contact potential barrier between the source/drain electrodes and the ZnO films when using high work-function metals such as Ag and Au. These results indicate that high performance TFTs can be obtained with a low temperature solution process with interfacial modification layers, which strongly implies further potential for their applications.

Keywords: ZnO thin film transistors; contact potential barrier; interfacial modification layers; solution process; stability.