Erosion Corrosion Behavior of Aluminum in Flowing Deionized Water at Various Temperatures

Materials (Basel). 2020 Feb 8;13(3):779. doi: 10.3390/ma13030779.

Abstract

To optimize the operating temperature and flow velocity of cooling water in a high voltage direct current (HVDC) thyristor valve cooling system, the erosion corrosion characteristics of aluminum electrodes in deionized water at various temperatures were studied. With increasing water temperature, the corrosion current of the aluminum electrode gradually increases and the charge transfer impedance gradually decreases, thus, the corrosion of aluminum tends to become serious. The aluminum electrode in 50 °C deionized water has the most negative corrosion potential (-0.930 V), the maximum corrosion current (1.115 × 10-6 A cm-2) and the minimum charge transfer impedance (8.828 × 10-6 Ω), thus, the aluminum corrosion at this temperature is the most serious. When the temperature of deionized water increases, the thermodynamic activity of the ions and dissolved oxygen in the deionized water increases, and the mass transfer process accelerates. Therefore, the electrochemical corrosion reaction of the aluminum surface will be accelerated. The corrosion products covering the aluminum electrode surface are mainly Al(OH)3. With increasing water temperature, the number of pits and grooves formed by corrosion on the aluminum surface increased. In this paper, the molar activation energy Ea and the equilibrium constant K of the aluminum corrosion reaction with various temperatures are calculated. This clarifies the effect of temperature on the aluminum corrosion reaction, which provides a basis for protecting aluminum from corrosion. The results of this study will contribute to research that is focused on the improvement of production techniques used for HVDC thyristor valve cooling systems.

Keywords: aluminum; deionized water; equilibrium constant; erosion corrosion; high voltage direct current; molar activation energy; radiator.