Evolving while invading: rapid adaptive evolution in juvenile development time for a biological control organism colonizing a high-elevation environment

Evol Appl. 2012 Jul;5(5):524-36. doi: 10.1111/j.1752-4571.2012.00278.x. Epub 2012 Jun 14.

Abstract

We report evidence of adaptive evolution in juvenile development time on a decadal timescale for the cinnabar moth Tyria jacobaeae (Lepidoptera: Arctiidae) colonizing new habitats and hosts from the Willamette Valley to the Coast Range and Cascades Mountains in Oregon. Four lines of evidence reveal shorter egg to pupa juvenile development times evolved in the mountains, where cooler temperatures shorten the growing season: (i) field observations showed that the mountain populations have shorter phenological development; (ii) a common garden experiment revealed genetic determination of phenotypic differences in juvenile development time between Willamette Valley and mountain populations correlated with the growing season; (iii) a laboratory experiment rearing offspring from parental crosses within and between Willamette Valley and Cascades populations demonstrated polygenic inheritance, high heritability, and genetic determination of phenotypic differences in development times; and (iv) statistical tests that exclude random processes (founder effect, genetic drift) in favor of natural selection as explanations for observed differences in phenology. These results support the hypothesis that rapid adaptation to the cooler mountain climate occurred in populations established from populations in the warmer valley climate. Our findings should motivate regulators to require evaluation of evolutionary potential of candidate biological control organisms prior to release.

Keywords: Senecio triangularis; Tyria jacobaeae; contemporary evolution; development time; heritability; natural selection; phenology; quantitative trait.