Cost-efficient management of peatland to enhance biodiversity in Finland

Sci Rep. 2024 Jan 30;14(1):2489. doi: 10.1038/s41598-024-52964-x.

Abstract

Peatlands provide a variety of ecosystem services besides being important ecosystems for biodiversity. Sustainable peatland management requires that its impacts are identified, and all management is allocated in a cost-efficient manner. In this study, we assessed how peatland management influences the habitat suitability of red-listed plant species and the financial performance of management measured as net present value (NPV). The study was done in three landscapes in Finland. We considered four peatland management scenarios i.e., no management activity (NOMANAGE), hydrological restoration (REST), wood harvesting for bioenergy (BIOENERGY), and timber production (TIMBER). The NPVs of different management scenarios were compared to the habitat suitability of red-listed peatland plant species. A cost-impact analysis was used, with TIMBER as a baseline scenario, to find out which alternative scenario would be the most cost-efficient in contributing to habitat suitability. Our study shows that potential habitat areas were significantly different between the scenarios. REST provided the largest potential habitat areas, followed by BIOENERGY, NOMANAGE, and TIMBER. TIMBER provided the best financial performance when low interest rates were used. REST and BIOENERGY were more cost-efficient in enhancing potential habitat areas than NOMANAGE. REST would improve suitable habitats and provide financial benefits when a higher interest rate was used. In conclusion, even a win-win condition could be achieved in some cases (33%), in which higher NPV was achieved simultaneously with improved potential habitat areas. The study provides information for alleviating the economic barriers of restoration and targeting land use and management options cost-efficiently.

MeSH terms

  • Biodiversity*
  • Conservation of Natural Resources
  • Costs and Cost Analysis
  • Ecosystem*
  • Finland
  • Wood