Changes in Lactate Production, Lactate Dehydrogenase Genes Expression and DNA Methylation in Response to Tamoxifen Resistance Development in MCF-7 Cell Line

Genes (Basel). 2021 May 19;12(5):777. doi: 10.3390/genes12050777.

Abstract

Lactate dehydrogenase (LDH) is a key enzyme in the last step of glycolysis, playing a role in the pyruvate-to-lactate reaction. It is associated with the prognosis and metastasis of many cancers, including breast cancer. In this study, we investigated the changes in LDH gene expression and lactate concentrations in the culture media during tamoxifen resistance development in the MCF-7 cell line, and examined LDHB promoter methylation levels. An upregulation of 2.9 times of LDHB gene expression was observed around the IC50 concentration of tamoxifen in treated cells, while fluctuation in LDHA gene expression levels was found. Furthermore, morphological changes in the cell shape accompanied the changes in gene expression. Bisulfate treatment followed by sequencing of the LDHB promoter was performed to track any change in methylation levels; hypomethylation of CpG areas was found, suggesting that gene expression upregulation could be due to methylation level changes. Changes in LDHA and LDHB gene expression were correlated with the increase in lactate concentration in the culture media of treated MCF-7 cells.

Keywords: LDHA and LDHB gene expression; LDHB hypomethylation; breast cancer; lactate; tamoxifen resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Cell Line, Tumor
  • DNA Methylation / genetics*
  • Drug Resistance, Neoplasm / genetics*
  • Female
  • Gene Expression / genetics*
  • Gene Expression Regulation, Neoplastic / drug effects
  • Gene Expression Regulation, Neoplastic / genetics
  • Glycolysis / genetics
  • Humans
  • L-Lactate Dehydrogenase / genetics*
  • L-Lactate Dehydrogenase / metabolism*
  • Lactic Acid / metabolism*
  • MCF-7 Cells
  • Prognosis
  • Promoter Regions, Genetic / genetics
  • Tamoxifen / pharmacology*
  • Up-Regulation / genetics

Substances

  • Tamoxifen
  • Lactic Acid
  • L-Lactate Dehydrogenase