Using Downscaled GRACE Mascon Data to Assess Total Water Storage in Mississippi Alluvial Plain Aquifer

Sensors (Basel). 2023 Jul 15;23(14):6428. doi: 10.3390/s23146428.

Abstract

The importance of high-resolution and continuous hydrologic data for monitoring and predicting water levels is crucial for sustainable water management. Monitoring Total Water Storage (TWS) over large areas by using satellite images such as Gravity Recovery and Climate Experiment (GRACE) data with coarse resolution (1°) is acceptable. However, using coarse satellite images for monitoring TWS and changes over a small area is challenging. In this study, we used the Random Forest model (RFM) to spatially downscale the GRACE mascon image of April 2020 from 0.5° to ~5 km. We initially used eight different physical and hydrological parameters in the model and finally used the four most significant of them for the final output. We executed the RFM for Mississippi Alluvial Plain. The validating data R2 for each model was 0.88. Large R2 and small RMSE and MAE are indicative of a good fit and accurate predictions by RFM. The result of this research aligns with the reported water depletion in the central Mississippi Delta area. Therefore, by using the Random Forest model and appropriate parameters as input of the model, we can downscale the GRACE mascon image to provide a more beneficial result that can be used for activities such as groundwater management at a sub-county-level scale in the Mississippi Delta.

Keywords: GRACE mascon; downscaling; random forest model; total water storage.