Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films

J Agric Food Chem. 2005 May 18;53(10):3950-7. doi: 10.1021/jf048790+.

Abstract

Chitosan films were plasticized with four hydrophilic compounds, namely, glycerol (GLY), ethylene glycol (EG), poly(ethylene glycol) (PEG), and propylene glycol (PG). Our objective was to investigate the effect of plasticizers on mechanical and surface properties of chitosan films. The stability of plasticized films was observed by storage for 3 and 20 weeks in an environmental chamber at 50 +/- 5% RH and 23 +/- 2 degrees C. Plasticization improves the chitosan ductility, and typical stress-strain curves of plasticized films have the features of ductile materials, except the film made with 5% PG that exhibits as a brittle polymer and shows an antiplasticization effect. In most cases, the elongation of plasticized films decreases with the storage time, which might be due to the recrystallization of chitosan and the loss of moisture and plasticizer from the film matrix. Although at the beginning the mechanical properties of films made with PG, at high plasticizer concentration, are comparable to those of films made with EG, GLY, and PEG, their stability is poor and they tend to become brittle materials. The surface properties, analyzed by contact angle measurement, reveal that plasticization increases film hydrophilicity. It is found that GLY and PEG are more suitable as chitosan plasticizers than EG and PG by taking into account their plasticization efficiency and storage stability. Furthermore, a plasticizer concentration of 20% (w/w) with GLY or PEG seemingly is sufficient to obtain flexible chitosan film with a good stability for 5 months of storage.

MeSH terms

  • Absorption
  • Calorimetry, Differential Scanning
  • Chitosan / chemistry*
  • Food Packaging*
  • Hot Temperature
  • Mechanics
  • Plasticizers / chemistry*
  • Surface Properties
  • Water

Substances

  • Plasticizers
  • Water
  • Chitosan