Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits

Materials (Basel). 2011 May 25;4(6):952-962. doi: 10.3390/ma4060952.

Abstract

A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p- Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p- Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz.

Keywords: Ni metallization; RF cross-talk isolation; macroporous Si.