Framework for rainfall-triggered landslide-prone critical infrastructure zonation

Sci Total Environ. 2023 May 10:872:162242. doi: 10.1016/j.scitotenv.2023.162242. Epub 2023 Feb 15.

Abstract

Rainfall-induced landslides cause frequent disruptions to critical infrastructure in mountainous countries. Climate change is altering rainfall patterns and localizing extreme rainfall events, increasing the occurrence of landslides. For planning climate-resilient critical infrastructure in landslide-prone regions, it is urgent to understand the changing landslide susceptibility in relation to changing rainfall extremes and spatially overlay them with critical infrastructure to determine risk zones. As such, areas requiring financial reinforcements can be prioritized. In this paper, we develop a framework linking changing rainfall extremes to landslide susceptibility and intensity of critical infrastructure - exemplified on a national scale using Nepal as a case study. First, we define a set of 21 different unique rainfall indices that describe extreme and localized rainfall. Second, we prepare a new annual (2016-2020) inventory of 107,900 landslides in Nepal mapped on PlanetScope satellite imagery. Next, we prepare a landslide susceptibility map by training a random forest model using the collected extreme rainfall indices and landslide locations in combination with spatial data on topography. Fourth, we construct a gridded critical infrastructure spatial density map that quantifies the intensity of infrastructure (i.e., transportation, energy, telecommunication, waste, water, health, and education) at each grid location using OpenStreetMap. The landslide susceptibility map classified Nepal's topography into low (36 %), medium (33 %), and (32 %) high rainfall-triggered landslide susceptibility zones. The landslide susceptibility map had an average area under the receiver characteristic curve value of 0.94. Finally, we overlay the landslide susceptibility map with the critical infrastructure intensity to identify areas needing financial reinforcement. Our framework reasonably mapped critical infrastructure hotspots in Nepal prone to landslides on a 1 km grid. The hotspots are mainly concentrated along major national highways and in provinces 4, 3, and 1, highlighting the need for improved land management practices. These hotspots need spatial prioritization regarding climate-resilient critical infrastructure financing and slope conservation policies. The research data, output maps, and code are publicly released via an ArcGIS WebApp and GitHub repository. The framework is scalable and can be used for developing infrastructure financing strategies for landslide mountain regions and countries.

Keywords: Climate resilience; Critical infrastructure; Development scenarios; Extreme rainfall; Landslide susceptibility.