Quantitative Evaluation of Broadband Photoacoustic Spectroscopy in the Infrared with an Optical Parametric Oscillator

Sensors (Basel). 2018 Nov 15;18(11):3971. doi: 10.3390/s18113971.

Abstract

We evaluate the spectral resolution and the detection thresholds achievable for a photoacoustic spectroscopy (PAS) system in the broadband infrared wavelength region 3270 n m ≲ λ ≲ 3530 n m driven by a continuous wave optical parametric oscillator (OPO) with P ¯ ≈ 1.26 W . The absorption spectra, I PAS ( λ i ) , for diluted propane, ethane and methane test gases at low concentrations ( c ∼ 100 ppm ) were measured for ∼1350 discrete wavelengths λ i . The I PAS ( λ i ) spectra were then compared to the high resolution cross section data, σ FTIR , obtained by Fourier Transform Infrared Spectroscopy published in the HITRAN database. Deviations of 7.1(6)% for propane, 8.7(11)% for ethane and 15.0(14)% for methane with regard to the average uncertainty between I PAS ( λ i ) and the expected reference values based on σ FTIR were recorded. The characteristic absorption wavelengths λ res can be resolved with an average resolution of δ λ res ∼ 0.08 nm . Detection limits range between 7.1 ppb (ethane) to 13.6 ppb (methane). In an additional step, EUREQA, an artificial intelligence (AI) program, was successfully applied to deconvolute simulated PAS spectra of mixed gas samples at low limits of detection. The results justify a further development of PAS technology to support e.g., biomedical research.

Keywords: EUREQA; OPO; PAS; gas sampling; hydrocarbons; optical-parametric oscillator; photoacoustic spectroscopy; spectral deconvolution.