Integrative effect of activated biochar to reduce water stress impact and enhance antioxidant capacity in crops

Sci Total Environ. 2023 Dec 20:905:166950. doi: 10.1016/j.scitotenv.2023.166950. Epub 2023 Sep 9.

Abstract

Biochar is a soil amendment that can change soil's physical and hydraulic properties. However, biochar application is far from being a 'one size fits-all' approach. The impact of the management practices is dependent on biochar type (feedstock and production conditions), application depth and method, climate and site characteristics. Hence, this study aims to enrich the available inconclusive information on how biochar could affect clay loamy soil and to assess the potential impact of the induced change on water stress mitigation of rain-fed durum wheat under the specific condition of the semi-arid environment of North West of Tunisia. A field experiment was investigated in which three biochar rates 0 (B0), 10 (equivalent to 0.5% of weight) (B1) and 20 t/ha (equivalent to 1% of weight), (B2), were tested. Other laboratory analysis allowed the evaluation of soil water retention curve (SWRC), saturated hydraulic conductivity (Ks), dry density (ρb) and biostress biomarkers such as glutathione-S-transferase (GST), catalase activities (CAT) and malondialdehyde content (MDA) as well as yield attributes. Results showed that treatment B2 significantly decreased ρb and Ks with relative change values of about -3.1% and -19%. Consequently, SWRC showed a better water retention capacity, mostly from saturation to matric potential value (h) of 33 kPa. Total (TAWC), plant (PAWC) and readily (RAWC) available water contents, significantly increased under B2 with relative changes of +6%, +44% and +44% respectively. Moreover, GST and CAT were also boosted under B2. Consequently, biological and grain yields as well as grain water use efficiency (GWUE) significantly increased. GWUE increased from 0.81 ± 0.04 in B0 to 1.09 ± 0.01 kg/m3 in B2. The correlation analysis showed a significant and positive correlation, between GWUE and soil water parameters (θs, θfc and θmre) suggesting the indirect effect of biochar on water-use efficiency for grain yield of wheat. Therefore, among the tested rates 20 t/ha could be suggested to improve plant soil water availability and reduce the harmful impact of drought stress on rain-fed durum wheat.

Keywords: Biochar; Drought stress; Grain water use efficiency and antioxidant capacity; Soil hydro-physical properties.

MeSH terms

  • Antioxidants*
  • Charcoal / pharmacology
  • Crops, Agricultural
  • Dehydration*
  • Edible Grain
  • Soil

Substances

  • biochar
  • Antioxidants
  • Charcoal
  • Soil