Dynamics and energetics of bottlenose dolphin (Tursiops truncatus) fluke-and-glide gait

J Exp Biol. 2023 Aug 1;226(15):jeb245237. doi: 10.1242/jeb.245237. Epub 2023 Aug 7.

Abstract

Intermittent locomotion composed of periods of active flapping/stroking followed by inactive gliding has been observed with species that inhabit both aerial and marine environments. However, studies on the energetic benefits of a fluke-and-glide (FG) gait during horizontal locomotion are limited for dolphins. This work presents a physics-based model of FG gait and an analysis of the associated cost of transport for bottlenose dolphins (Tursiops truncatus). New gliding drag coefficients for the model were estimated using measured data from free-swimming bottlenose dolphins. The data-driven approach used kinematic measurement from 84 h of biologging tag data collected from three animals to estimate the coefficients. A set of 532 qualifying gliding events were automatically extracted for estimation of the gliding drag coefficient. Next, data from 783 FG bouts were parameterized and used with the model-based dynamic analysis to investigate the cost benefits of FG gait. Experimental results indicate that FG gait was preferred at speeds of ∼2.2-2.7 m s-1. Observed FG bouts had an average duty factor of 0.45 and a gliding duration of 5 s. The average associated metabolic cost of transport (COT) and mechanical cost of transport (MECOT) of FG gait are 2.53 and 0.35 J m-1 kg-1, respectively, at the preferred speeds. This corresponded to a respective 18.9% and 27.1% reduction in cost when compared with model predictions of continuous fluking gait at the same average bout speed. Average thrust was positively correlated with fluking frequency and amplitude as animals accelerated during the FG bouts, whereas fluking frequency and amplitude were negatively correlated for a given thrust range. These results suggest that FG gait enhances the horizontal swimming efficiency of bottlenose dolphins and provides new insights into the gait dynamics of these animals.

Keywords: Biologging sensors; Burst and coast; Data-driven; Dynamic modeling; Intermittent locomotion; Swimming biomechanics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bottle-Nosed Dolphin*
  • Energy Metabolism
  • Gait
  • Swimming