Contaminant metal concentrations in three species of aquatic macrophytes from the Coeur d'Alene Lake basin, USA

Environ Monit Assess. 2021 Oct 1;193(10):683. doi: 10.1007/s10661-021-09488-y.

Abstract

The Coeur d'Alene Lake basin in Northwestern USA has extensive contamination from legacy mining waste, which overlaps with aquatic macrophyte habitat. We examined concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in three macrophytes: Elodea canadensis (submerged), Myriophyllum spicatum (submerged), and Sagittaria latifolia (emergent). We collected macrophyte tissues from five contaminated sites and one uncontaminated site. Tissue concentrations were compared to sediment quality guidelines to assess potential toxicity from metal(loid)s to macrophyte-associated biota. We used threshold and probable effect concentrations to screen for potential toxicity. For the submerged species, the highest site means ± SD (analyte mg/kg dry mass) were 96 ± 61 (As), 18 ± 1.7 (Cd), 24 ± 15 (Cu), 610 ± 392 (Pb), and 1425 ± 222 (Zn). For contaminated sites, the probable effect threshold was exceeded in 38% (As), 45% (Cd), 0% (Cu), 74% (Pb), and 67% (Zn) of submerged species concentrations. Metal concentrations in S. latifolia tubers were lower than the submerged species leaves and shoots. Tuber concentrations did not exceed the probable effect threshold for any metal. Spatial differences in concentrations were most distinct for the submerged species. Our work shows significant amounts of metals are accumulating in some macrophytes of the study area and that biota associated with this vegetation may experience toxicity based upon guideline exceedances. Additionally, managers of invasive plants (e.g., M. spicatum) should consider the ramifications of control efforts given the high metal content of some plants (e.g., disposal issue).

Keywords: Aquatic macrophyte; Arsenic; Cadmium; Lead; Legacy mining contamination; Zinc.

MeSH terms

  • Environmental Monitoring
  • Geologic Sediments
  • Lakes
  • Metals
  • Metals, Heavy* / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Metals
  • Metals, Heavy
  • Water Pollutants, Chemical