Estimating high-density aboveground biomass within a complex tropical grassland using Worldview-3 imagery

Environ Monit Assess. 2024 Mar 15;196(4):370. doi: 10.1007/s10661-024-12476-7.

Abstract

A large percentage of native grassland ecosystems have been severely degraded as a result of urbanization and intensive commercial agriculture. Extensive nitrogen-based fertilization regimes are widely used to rehabilitate and boost productivity in these grasslands. As a result, modern management frameworks rely heavily on detailed and accurate information on vegetation condition to monitor the success of these interventions. However, in high-density environments, biomass signal saturation has hampered detailed monitoring of rangeland condition. This issue stems from traditional broad-band vegetation indices (such as NDVI) responding to high levels of photosynthetically active radiation (PAR) absorption by leaf chlorophyll, which affects leaf area index (LAI) sensitivity within densely vegetative regions. Whilst alternate hyperspectral solutions may alleviate the problem to a certain degree, they are often too costly and not readily available within developing regions. To this end, this study evaluated the use of high-resolution Worldview-3 imagery in combination with modified NDVI indices and image manipulation techniques in reducing the effects of biomass signal saturation within a complex tropical grassland. Using the random forest algorithm, several modified NDVI-type indices were developed from all potential dual-band combinations of the Worldview-3 image. Thereafter, linear contrast stretching and histogram equalization were implemented in conjunction with Singular Value Decomposition (SVD) to improve high-density biomass estimation. Results demonstrated that both contrast enhancement techniques, when combined with SVD, improved high-density biomass estimation. However, linear contrast stretching, SVD, and modified NDVI indices developed from the red (630-690 nm), green (510-580 nm), and near-infrared 1 (770-895 nm) bands were found to produce the best biomass predictive model (R2 = 0.71, RMSE = 0.40 kg/m2). The results generated from this research offer a means to alleviate the biomass saturation problem. This framework provides a platform to assist rangeland managers in regionally assessing changes in vegetation condition within high-density grasslands.

Keywords: Aboveground biomass; Biomass saturation; Histogram equalization; Linear stretch; Normalized difference vegetation index; Random forest; Worldview-3.

MeSH terms

  • Biomass
  • Ecosystem*
  • Environmental Monitoring / methods
  • Grassland*
  • Plant Leaves