1-(N-Acylamino)alkyltriarylphosphonium Salts with Weakened Cα-P⁺ Bond Strength-Synthetic Applications

Molecules. 2018 Sep 25;23(10):2453. doi: 10.3390/molecules23102453.

Abstract

The α-amidoalkylating properties of 1-(N-acylamino)alkyltriarylphosphonium salts with weakened Cα-P⁺ bond strength are discussed and examined. It is demonstrated that such type of phosphonium salts reacts smoothly with a diverse array of carbon- and heteroatom-based nucleophiles, including 1-morpholinocyclohexene, 1,3-dicarbonyl compounds, benzotriazole sodium salt, p-toluenesulfinate sodium salt, benzylamine, triarylphosphines, and other P-nucleophiles. Reactions are conducted at room temperature, in a short time (5⁻15 min) and mostly without catalysts. Simple work-up procedures result in good or very good yields of products. The structures of known compounds were established by spectroscopic methods and all new compounds have been fully characterized using ¹H-, 13C-, 31P-NMR, IR spectroscopy, and high-resolution mass spectrometry. Mechanistic aspects of described transformations are also performed and discussed. It was demonstrated that unique properties make 1-(N-acylamino)alkyl-triarylphosphonium salts with weakened Cα-P⁺ bond strength interesting building blocks with great potential, especially in α-amidoalkylation reactions.

Keywords: N-acylimine; N-acyliminium cation; organophosphorus chemistry; phosphonium salts; α-amidoalkylating agents.

MeSH terms

  • Carbon / chemistry*
  • Catalysis*
  • Cations / chemistry
  • Oligopeptides / chemistry
  • Organophosphorus Compounds / chemical synthesis
  • Organophosphorus Compounds / chemistry*
  • Salts / chemistry

Substances

  • Cations
  • Oligopeptides
  • Organophosphorus Compounds
  • Salts
  • Carbon
  • acyline