Temperature-Driven Self-Doping in Magnetite

Phys Rev Lett. 2021 Oct 29;127(18):186402. doi: 10.1103/PhysRevLett.127.186402.

Abstract

Magnetite is one of the most fascinating materials exhibiting the enigmatic first-order Verwey transition which is conventionally manipulated through chemical doping. Here, we show that heating magnetite results in a spontaneous charge reordering and, consequently, a hole self-doping effect at the octahedral sublattice. Core-level x-ray spectroscopy measurements combined with theory uncovers that there are three regimes of self-doping that map the temperature dependence of the electrical conductivity and magnetism up to the Curie temperature. Our results provide an elegant analogy between the effect of chemical doping and temperature-driven self-doping on trimerons in magnetite.