Gonadal Hormones E2 and P Mitigate Cerebral Ischemia-Induced Upregulation of the AIM2 and NLRC4 Inflammasomes in Rats

Int J Mol Sci. 2020 Jul 7;21(13):4795. doi: 10.3390/ijms21134795.

Abstract

Acute ischemic stroke (AIS) is a devastating neurological condition with a lack of neuroprotective therapeutic options, despite the reperfusion modalities thrombolysis and thrombectomy. Post-ischemic brain damage is aggravated by an excessive inflammatory cascade involving the activation and regulation of the pro-inflammatory cytokines IL-1β and IL-18 by inflammasomes. However, the role of AIM2 and NLRC4 inflammasomes and the influence of the neuroprotective steroids 17β-estradiol (E2) and progesterone (P) on their regulation after ischemic stroke have not yet been conclusively elucidated. To address the latter, we subjected a total of 65 rats to 1 h of transient Middle Cerebral Artery occlusion (tMCAO) followed by a reperfusion period of 72 h. Moreover, we evaluated the expression and regulation of AIM2 and NLRC4 in glial single-cell cultures (astroglia and microglia) after oxygen-glucose deprivation (OGD). The administration of E2 and P decreased both infarct sizes and neurological impairments after cerebral ischemia in rats. We detected a time-dependent elevation of gene and protein levels (Western Blot/immunohistochemistry) of the AIM2 and NLRC4 inflammasomes in the post-ischemic brains. E2 or P selectively mitigated the stroke-induced increase of AIM2 and NLRC4. While both inflammasomes seemed to be exclusively abundant in neurons under physiological and ischemic conditions in vivo, single-cell cultures of cortical astrocytes and microglia equally expressed both inflammasomes. In line with the in vivo data, E and P selectively reduced AIM2 and NLRC4 in primary cortical astrocytes and microglial cells after OGD. In conclusion, the post-ischemic elevation of AIM2 and NLRC4 and their down-regulation by E2 and P may shed more light on the anti-inflammatory effects of both gonadal hormones after stroke.

Keywords: AIM; Astrocytes; Estrogen; Inflammasomes; Microglia; NLRC4; Neuroprotection; OGD; Progesterone; Stroke.

MeSH terms

  • Animals
  • Apoptosis Regulatory Proteins / metabolism
  • Astrocytes / metabolism
  • Brain / metabolism
  • Brain Ischemia / metabolism*
  • DNA-Binding Proteins / metabolism*
  • Estradiol / metabolism*
  • Gonadal Hormones / metabolism*
  • Infarction, Middle Cerebral Artery / metabolism
  • Inflammasomes / metabolism*
  • Male
  • Microglia / metabolism
  • Neurons / metabolism
  • Rats
  • Rats, Wistar
  • Receptors, Cell Surface / metabolism*
  • Reperfusion / methods
  • Stroke / metabolism
  • Up-Regulation / physiology*

Substances

  • AIM2 protein, rat
  • Apoptosis Regulatory Proteins
  • DNA-Binding Proteins
  • Gonadal Hormones
  • Inflammasomes
  • NLRC4 protein, rat
  • Receptors, Cell Surface
  • Estradiol