Rumen and Serum Metabolomes in Response to Endophyte-Infected Tall Fescue Seed and Isoflavone Supplementation in Beef Steers

Toxins (Basel). 2020 Nov 26;12(12):744. doi: 10.3390/toxins12120744.

Abstract

Fescue toxicosis impacts beef cattle production via reductions in weight gain and muscle development. Isoflavone supplementation has displayed potential for mitigating these effects. The objective of the current study was to evaluate isoflavone supplementation with fescue seed consumption on rumen and serum metabolomes. Angus steers (n = 36) were allocated randomly in a 2 × 2 factorial arrangement of treatments including endophyte-infected (E+) or endophyte-free (E-) tall fescue seed, with (P+) or without (P-) isoflavones. Steers were provided a basal diet with fescue seed for 21 days, while isoflavones were orally administered daily. Following the trial, blood and rumen fluid were collected for metabolite analysis. Metabolites were extracted and then analyzed by UPLC-MS. The MAVEN program was implemented to identify metabolites for MetaboAnalyst 4.0 and SAS 9.4 statistical analysis. Seven differentially abundant metabolites were identified in serum by isoflavone treatment, and eleven metabolites in the rumen due to seed type (p < 0.05). Pathways affected by treatments were related to amino acid and nucleic acid metabolism in both rumen fluid and serum (p < 0.05). Therefore, metabolism was altered by fescue seed in the rumen; however, isoflavones altered metabolism systemically to potentially mitigate detrimental effects of seed and improve animal performance.

Keywords: beef cattle; endophyte; ergot alkaloid; fescue toxicosis; isoflavone; metabolites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / metabolism
  • Animal Feed / microbiology
  • Animal Feed / poisoning
  • Animals
  • Cattle
  • Chromatography, Liquid
  • Dietary Supplements
  • Endophytes / physiology
  • Ergot Alkaloids / toxicity
  • Ergotism / drug therapy
  • Festuca / microbiology
  • Festuca / poisoning
  • Isoflavones / administration & dosage*
  • Metabolome / drug effects*
  • Nucleic Acids / metabolism
  • Plant Poisoning / veterinary
  • Rumen / drug effects*
  • Seeds / poisoning
  • Serum / metabolism*
  • Tandem Mass Spectrometry

Substances

  • Amino Acids
  • Ergot Alkaloids
  • Isoflavones
  • Nucleic Acids