The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball

Materials (Basel). 2016 Sep 3;9(9):754. doi: 10.3390/ma9090754.

Abstract

This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.

Keywords: electro-deposited coating; fretting; friction; frictional ageing.