Clinical Value of EGFR Copy Number Gain Determined by Amplicon-Based Targeted Next Generation Sequencing in Patients with EGFR-Mutated NSCLC

Target Oncol. 2021 Mar;16(2):215-226. doi: 10.1007/s11523-021-00798-2. Epub 2021 Feb 19.

Abstract

Background: The clinical relevance of epidermal growth factor receptor (EGFR) copy number gain in patients with EGFR mutated advanced non-small cell lung cancer on first-line tyrosine kinase inhibitor treatment has not been fully elucidated.

Objective: We aimed to estimate EGFR copy number gain using amplicon-based next generation sequencing data and explored its prognostic value.

Patients and methods: Next generation sequencing data were obtained for 1566 patients with non-small cell lung cancer. EGFR copy number gain was defined based on an increase in EGFR read counts relative to internal reference amplicons and normal controls in combination with a modified z-score ≥ 3.5. Clinical follow-up data were available for 60 patients treated with first-line EGFR-tyrosine kinase inhibitors.

Results: Specificity and sensitivity of next generation sequencing-based EGFR copy number estimations were above 90%. EGFR copy number gain was observed in 27.9% of EGFR mutant cases and in 7.4% of EGFR wild-type cases. EGFR gain was not associated with progression-free survival but showed a significant effect on overall survival with an adjusted hazard ratio of 3.14 (95% confidence interval 1.46-6.78, p = 0.003). Besides EGFR copy number gain, osimertinib in second or subsequent lines of treatment and the presence of T790M at relapse revealed significant effects in a multivariate analysis with adjusted hazard ratio of 0.43 (95% confidence interval 0.20-0.91, p = 0.028) and 0.24 (95% confidence interval 0.1-0.59, p = 0.001), respectively.

Conclusions: Pre-treatment EGFR copy number gain determined by amplicon-based next generation sequencing data predicts worse overall survival in EGFR-mutated patients treated with first-line EGFR-tyrosine kinase inhibitors. T790M at relapse and subsequent treatment with osimertinib predict longer overall survival.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Carcinoma, Non-Small-Cell Lung / drug therapy*
  • DNA Copy Number Variations / genetics*
  • Female
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Lung Neoplasms / drug therapy*
  • Male
  • Middle Aged
  • Mutation