Planform changes and large wood dynamics in two torrents during a severe flash flood in Braunsbach, Germany 2016

Sci Total Environ. 2018 Nov 1:640-641:315-326. doi: 10.1016/j.scitotenv.2018.05.186. Epub 2018 May 30.

Abstract

This work presents a post-event survey study, addressing the geomorphic response and large wood budget of two torrents, Grimmbach and Orlacher Bach, in southwestern Germany that were affected by a flash flood on May 29, 2016. During the event, large amounts of wood clogged and damaged a bridge of a cycling path at the outlet of the Grimmbach, while the town of Braunsbach was devastated by discharge and material transported along the Orlacher Bach. The severity of the event in these two small catchments (30.0 km2 and 5.95 km2, respectively) is remarkable in basins with a relatively low average slope (10.7 and 12.0%, respectively). In order to gain a better understanding of the driving forces during this flood event an integrated approach was applied including (i) an estimate of peak discharges, (ii) an analysis of changes in channel width by comparing available aerial photographs before the flood with a post-flood aerial surveys with an Unmanned Aerial Vehicle and validation with field observations, (iii) a detailed mapping of landslides and analysis of their connectivity with the channel network and finally (iv) an analysis of the amounts of large wood recruited and deposited in the channel. The morphological changes in the channels can be explained by hydraulic parameters, such as stream power and unit stream power, and by morphological parameters such as the valley confinement. This is similar for LW recruitment amounts and volume of exported LW since most of it comes from the erosion of the valley floor. The morphological changes and large wood recruitment and deposit are in the range of studied mountain rivers. Both factors thus need to be considered for mapping and mitigating flash flood hazards also in this kind of low range mountains.

Keywords: Channel widening; Floods; Landslides; Large wood; Large wood budget.

MeSH terms

  • Floods*
  • Germany
  • Rivers / chemistry*
  • Water Movements
  • Wood*