Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete

Materials (Basel). 2016 Dec 24;10(1):10. doi: 10.3390/ma10010010.

Abstract

Polymeric capsules can have an advantage over glass capsules used up to now as proof-of-concept carriers in self-healing concrete. They allow easier processing and afford the possibility to fine tune their mechanical properties. Out of the multiple requirements for capsules used in this context, the capability of rupturing when crossed by a crack in concrete of a typical size is one of the most relevant, as without it no healing agent is released into the crack. This study assessed the fitness of five types of polymeric capsules to fulfill this requirement by using a numerical model to screen the best performing ones and verifying their fitness with experimental methods. Capsules made of a specific type of poly(methyl methacrylate) (PMMA) were considered fit for the intended application, rupturing at average crack sizes of 69 and 128 μm, respectively for a wall thickness of ~0.3 and ~0.7 mm. Thicker walls were considered unfit, as they ruptured for crack sizes much higher than 100 μm. Other types of PMMA used and polylactic acid were equally unfit for the same reason. There was overall good fitting between model output and experimental results and an elongation at break of 1.5% is recommended regarding polymers for this application.

Keywords: capsules; concrete; cracks; polymers; self-healing; simulation.