Pneumatic Bionic Hand with Rigid-Flexible Coupling Structure

Materials (Basel). 2022 Feb 13;15(4):1358. doi: 10.3390/ma15041358.

Abstract

This paper presents a rigid-flexible composite of bionic hand structure design scheme solution for solving the problem of low load on the soft gripping hand. The bionic hand was designed based on the Fast Pneumatic Network (FPN) approach, which can produce a soft finger bending drive mechanism. A soft finger bending driver was developed and assembled into a human-like soft gripping hand which includes a thumb for omnidirectional movement and four modular soft fingers. An experimental comparison of silicone rubber materials with different properties was conducted to determine suitable materials. The combination of 3D printing technology and mold pouring technology was adopted to complete the prototype preparation of the bionic hand. Based on the second-order Yeoh model, a soft bionic finger mathematical model was established, and ABAQUS simulation analysis software was used for correction to verify the feasibility of the soft finger bending. We adopted a pneumatic control scheme based on a motor micro-pump and developed a human-computer interface through LabView. A comparative experiment was carried out on the bending performance of the finger, and the experimental data were analyzed to verify the accuracy of the mathematical model and simulation. In this study, the control system was designed, and the human-like finger gesture and grasping experiments were carried out.

Keywords: liquid silicone rubber; mechanical modeling; motor micropump; rigid-flexible coupling; soft gripper.