On Inactivation of the Coronavirus Main Protease

J Chem Inf Model. 2024 Mar 11;64(5):1644-1656. doi: 10.1021/acs.jcim.3c01518. Epub 2024 Feb 29.

Abstract

A deeper understanding of the inactive conformations of the coronavirus main protease (MPro) could inform the design of allosteric drugs. Based on extensive molecular dynamics simulations, we built a Markov State Model to investigate structural changes that can inactivate the SARS-CoV-2 MPro. In a subset of structures, one subunit of the homodimer assumes an inactive conformation that resembles an inactive crystal structure. However, contradicting the widely held half-of-sites activity hypothesis, the most populated enzyme structures have two active subunits. We then used transition path theory (TPT) and the Jensen-Shannon Divergence (JSD) to pinpoint residues involved in the inactivation process. A π stack between Phe140 and His163 is a key feature that can distinguish active and inactive conformations of MPro. Each subunit has unique inactive conformations stabilized by π stacking interactions involving residues Phe140, Tyr118, His163, and His172, a hydrogen bonding network centered around His163 and His172, and a modified network of interactions in the dimer interface. The importance of these residues in maintaining an active structure explains the sensitivity of enzymatic activity to site-directed mutagenesis.

MeSH terms

  • Molecular Docking Simulation
  • Molecular Dynamics Simulation*
  • Peptide Hydrolases
  • Protease Inhibitors / chemistry
  • SARS-CoV-2*

Substances

  • Peptide Hydrolases
  • Protease Inhibitors