The potential of Tidal River Management for flood alleviation in South Western Bangladesh

Sci Total Environ. 2020 Aug 20:731:138747. doi: 10.1016/j.scitotenv.2020.138747. Epub 2020 May 6.

Abstract

Reduced sediment deposition, land subsidence, channel siltation, and salinity intrusion has been an unintended consequence of the construction of polders in the south western delta of Bangladesh in the 1960s. Tidal River Management (TRM) is a process that is intended to temporarily reverse these processes and restore sediment deposition and land elevation at the low-lying sites, known as 'beels', where TRM is carried out. However, there is limited evidence to prioritise sites for TRM on the basis of its potential effectiveness at alleviating flooding. In this study, the south western delta of Bangladesh was classified according to different flood susceptible zones. In south western Bangladesh, the major portion of agricultural and aquaculture land is located within flood susceptible zones (65% and 81%, respectively). 44.5% of the total population in embanked regions live in areas classified as being flood susceptible. This study identified 106 'beels' suitable for TRM. Modelling of potential sediment deposition predicted that the consequent increase in land elevation could be up to 1.4 m in five years, which would alleviate land subsidence and modify several geomorphological factors such as aspect, slope, curvature, and Stream Power Index (SPI). Implementation of TRM at these sites could potentially reduce the probability of annual flooding from 0.86 (on average) to 0.57 (on average). Therefore, TRM could lower the flood susceptible area by 35% in suitable 'beels'. Whilst during the implementation of TRM agriculture has to cease for a few years, a systematic programme of TRM could result in a long-term increase in agricultural production by reducing flood susceptibility of agricultural lands in delta regions.

Keywords: Bangladesh coastal region; Flood susceptibility; Frequency ratio; Logistic regression; Sediment transportation; Tidal River Management.