Design Optimization of Hybrid-Switch Soft-Switching Inverters Using Multiscale Electrothermal Simulation

IEEE Trans Power Electron. 2017:32:10.1109/TPEL.2016.2528264. doi: 10.1109/TPEL.2016.2528264.

Abstract

A multiscale electrothermal simulation approach is presented to optimize the design of a hybrid switch soft-switching inverter using a library of dynamic electrothermal component models parameterized in terms of electrical, structural, and material properties. Individual device area, snubber capacitor, and gate drive timing are used to minimize the total loss of the soft-switching inverter module subject to the design constraints including total device area and minimum on-time consideration. The proposed multiscale electrothermal simulation approach allows for a large number of parametric studies involving multiple design variables to be considered, drastically reducing simulation time. The optimized design is then compared and contrasted with an already existing design from the Virginia Tech Freedom Car Project using the generation II module. It will be shown that the proposed approach improves the baseline design by 16% in loss and reduces the cooling requirements by 42%. Validation of the electrical and thermal device models against measured data is also provided.

Keywords: Electrothermal effects; inverters; optimization.