Aptamer-Based Sandwich Assay Formats for Detection and Discrimination of Human High- and Low-Molecular-Weight uPA for Cancer Prognosis and Diagnosis

Cancers (Basel). 2022 Oct 25;14(21):5222. doi: 10.3390/cancers14215222.

Abstract

Urokinase-type plasminogen activator (urokinase, uPA) is a frequently discussed biomarker for prognosis, diagnosis, and recurrence of cancer. In a previous study, we developed ssDNA aptamers that bind to different forms of human urokinase, which are therefore assumed to have different binding regions. In this study, we demonstrate the development of aptamer-based sandwich assays that use different combinations of these aptamers to detect high molecular weight- (HMW-) uPA in a micro titer plate format. By combining aptamers and antibodies, it was possible to distinguish between HMW-uPA and low molecular weight- (LMW-) uPA. For the best performing aptamer combination, we calculated the limit of detection (LOD) and limit of quantification (LOQ) in spiked buffer and urine samples with an LOD up to 50 ng/mL and 138 ng/mL, respectively. To show the specificity and sequence dependence of the reporter aptamer uPAapt-02-FR, we have identified key nucleotides within the sequence that are important for specific folding and binding to uPA using a fluorescent dye-linked aptamer assay (FLAA). Since uPA is a much-discussed marker for prognosis and diagnosis in various types of cancers, these aptamers and their use in a micro titer plate assay format represent a novel, promising tool for the detection of uPA and for possible diagnostic applications.

Keywords: ALISA; ELONA; aptamer; biomarker; cancer prognosis; early stage cancer detection; sandwich assay; uPA; urokinase.