Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction

J Am Chem Soc. 2011 Sep 28;133(38):15172-83. doi: 10.1021/ja205649z. Epub 2011 Aug 30.

Abstract

Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir(71)Sn(29) catalysts with an average diameter of 2.7 ± 0.6 nm through a "surfactant-free" wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the "real" heterogeneous structure of Ir(71)Sn(29)/C particles as Ir/Ir-Sn/SnO(2), which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO(2) present on the surface. The Ir(71)Sn(29)/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO(2) on surface. Our cross-disciplinary work, from novel "surfactant-free" synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of "real" heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC technology by replacing Pt with low-cost, highly active Ir-based catalysts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Electrochemistry
  • Ethanol / chemistry*
  • Iridium / chemistry*
  • Nanoparticles / chemistry*
  • Oxidation-Reduction
  • Particle Size
  • Quantum Theory
  • Surface Properties
  • Tin / chemistry*
  • Tin Compounds / chemistry*

Substances

  • Tin Compounds
  • Ethanol
  • Iridium
  • Tin
  • stannic oxide