Developing GLAD Parameters to Control the Deposition of Nanostructured Thin Film

Sensors (Basel). 2022 Jan 14;22(2):651. doi: 10.3390/s22020651.

Abstract

In this paper, we describe the device developed to control the deposition parameters to manage the glancing angle deposition (GLAD) process of metal-oxide thin films for gas-sensing applications. The GLAD technique is based on a set of parameters such as the tilt, rotation, and substrate temperature. All parameters are crucial to control the deposition of nanostructured thin films. Therefore, the developed GLAD controller enables the control of all parameters by the scientist during the deposition. Additionally, commercially available vacuum components were used, including a three-axis manipulator. High-precision readings were tested, where the relative errors calculated using the parameters provided by the manufacturer were 1.5% and 1.9% for left and right directions, respectively. However, thanks to the formula developed by our team, the values were decreased to 0.8% and 0.69%, respectively.

Keywords: gas sensors; glancing angle deposition; magnetron sputtering; metal oxides; thin films.