Nanometric MIL-125-NH₂ Metal-Organic Framework as a Potential Nerve Agent Antidote Carrier

Nanomaterials (Basel). 2017 Oct 12;7(10):321. doi: 10.3390/nano7100321.

Abstract

The three-dimensional (3D) microporous titanium aminoterephthalate MIL-125-NH₂ (MIL: Material of Institut Lavoisier) was successfully isolated as monodispersed nanoparticles, which are compatible with intravenous administration, by using a simple, safe and low-cost synthetic approach (100 °C/32 h under atmospheric pressure) so that for the first time it could be considered for encapsulation and the release of drugs. The nerve agent antidote 2-[(hydroxyimino)methyl]-1-methyl-pyridinium chloride (2-PAM or pralidoxime) was effectively encapsulated into the pores of MIL-125-NH₂ as a result of the interactions between 2-PAM and the pore walls being mediated by π-stacking and hydrogen bonds, as deduced from infrared spectroscopy and Monte Carlo simulation studies. Finally, colloidal solutions of MIL-125-NH₂ nanoparticles exhibited remarkable stability in different organic media, aqueous solutions at different pH and under relevant physiological conditions over time (24 h). 2-PAM was rapidly released from the pores of MIL-125-NH₂ in vitro.

Keywords: MIL-125-NH2; colloidal stability; drug delivery; metal–organic frameworks; nanoparticles; pralidoxime.