Submarine wastewater discharges: dispersion modelling in the Northern Adriatic Sea

Environ Sci Pollut Res Int. 2010 May;17(4):844-55. doi: 10.1007/s11356-009-0273-7. Epub 2009 Dec 13.

Abstract

Background, aim and scope: Opposite interests must coexist in coastal areas: the presence of significant cities and urban centres, of touristic and recreational areas, and of extensive shellfish farming. To avoid local pollution caused by treated wastewaters along the Northern Adriatic coast (Friuli Venezia-Giulia and Veneto regions), marine outfall systems have been constructed. In this study, the application of a numerical dispersion model is used to support the traditional monitoring methods in order to link information concerning the hydrodynamic circulation and the microbiological features, to evaluate possible health risks associated with recreational and coastal shellfish farming activities. The study is a preliminary analysis of the environmental impact of wastewater treatment plants (WWTPs) with submarine discharge outfalls. It also could be useful for the water profile definition according to the Directive 2006/7/EC on the quality of bathing water and for the integrated areal analysis (Ostoich et al. 2006), to define the area of influence of each submarine discharge point.

Materials and methods: Historical data on discharges of the considered WWTPs were recovered and evaluated. Data on discharges' control for Veneto region (WWTPs of Lido and Cavallino) were produced by the WWTPs' manager Veritas Laboratory service, while data for the WWTPs of Friuli Venezia-Giulia region were produced by the regional environmental protection agency in the institutional control activity following official methods. The hydrodynamic model used in this work is the three-dimensional version of the finite element model SHYFEM, developed at ISMAR-CNR (Marine Science Institute of the Italian National Research Council) in Venice (Umgiesser et al. J Mar Syst 51:123-145, 2008).

Results and discussion: Numerical simulations have been carried out with the 3D version of the finite element model SHYFEM for 3 months during autumn 2007 to evaluate the bacterial pollution dispersion along the coasts of Veneto and Friuli Venezia-Giulia regions, prescribing meteo-marine forcings and concentration values at the points corresponding to the positions of the submarine outfalls. Model results show that during autumn 2007 the discharges of the submarine outfalls of the Venice province seem to have no impact on the surface water quality, while there are some visible effects in the Gulf of Trieste. This reflects the behaviour of the experimental data collected by ARPAV and ARPA FVG and monitoring campaigns both on water and shellfish quality. Further results have been elaborated to identify the area of influence of each discharge point; scenarios were developed with imposed concentrations. The results seem to highlight that the two discharges of the Veneto region are not noticeable, while the discharges of the Gulf of Trieste (in particular the Servola and Barcola ones) are perceptible.

Conclusions: This study represents a new step towards the study of the microbiological pollution dispersion and impact due to the discharges of the submarine outfalls of the Veneto and Friuli Venezia-Giulia regions (nine considered discharge points). With the 3D version of the finite element model SHYFEM, the information obtained from the hydrodynamic circulation has been linked to the classical methods of analysis, to assess possible risks connected to the microbiological parameter Escherichia coli.

Recommendations and perspectives: In future studies the time scale for microbiological parameters' decay could be linked to various environmental parameters such as light climate, temperature, and salinity. Interesting information would come from the study of new scenarios with different configurations of the discharge of the pipelines and/or the treatment plants and in particular from the improvements of the 3D version of the SHYFEM model, to take the stratification process into account which occurs during spring-summer, since the Northern Adriatic Sea is a very complex ecosystem, both as physical and ecological processes.

MeSH terms

  • Environmental Monitoring / methods
  • Escherichia coli / isolation & purification
  • Kinetics
  • Mediterranean Sea
  • Models, Theoretical*
  • Seawater / chemistry*
  • Seawater / microbiology
  • Ships
  • Waste Disposal, Fluid*
  • Water Pollutants / analysis*
  • Water Pollutants / isolation & purification

Substances

  • Water Pollutants