Studio One: A New Teaching Model for Exploring Bio-Inspired Design and Fabrication

Biomimetics (Basel). 2019 Apr 29;4(2):34. doi: 10.3390/biomimetics4020034.

Abstract

The increasing specialization in architecture has clearly left its marks not only on the general profession but also on architectural education. Many universities around the world react to this development by offering primarily conventional and overly discipline-specific courses that often lack bold new concepts. To remedy this situation, the authors propose an alternative teaching model called Studio One, which seeks to facilitate new dynamic links between architecture and other disciplines based on the interplay between fundamental research, design exploration, and practical application. The goal is to develop an interdisciplinary, collaborative design training that encompasses the best that nature has to teach us, realized through the technology that humans have achieved. At the core of this class is the study of biological structures and the development of bio-inspired construction principles for architectural design. Both aspects are rich sources of innovation and can play an important role in the training of future architects and engineers. This paper seeks to provide a coherent progress report. After a brief introduction to the general objectives of Studio One, the authors will specify the methods and 21st century skills that students learned during this class. Relying on four student capstone projects as examples, the paper will then go into more detail on how natural structures can inspire a new design process, in which students abstract basic biomimetic principles and transfer them into the construction of architectural prototypes and pavilions. Finally, the authors conclude by discussing the particular successes and challenges facing this teaching model and identify the key improvements that may give this program an even bigger impact in the future.

Keywords: architectural education; bio-inspiration; biomimetics; fiber composites; parametric design; structural analysis; structures.