Poly-L-lactic Acid (PLLA)-Chitosan-Collagen Electrospun Tube for Vascular Graft Application

J Funct Biomater. 2018 Apr 30;9(2):32. doi: 10.3390/jfb9020032.

Abstract

Poly-L-Lactic acid (PLLA) blended with chitosan and collagen was used to fabricate a conduit for blood vessel engineering through an electrospinning process. Various concentrations of chitosan were used in the blend in order to study its effect on the morphology, chemical bond, tensile strength, burst pressure, hemocompatibility, and cell viability (cytotoxicity) of the tube.In vitro assessments indicated that addition of chitosan-collagen could improve cell viability and hemocompatibility. Best results were demonstrated by the conduit with 10% PLLA, 0.5% chitosan, and 1% collagen. Tensile strength reached 2.13 MPa and burst pressure reached 2593 mmHg, both values that are within the range value of native blood vessel. A hemolysis percentage of 1.04% and a cell viability of 86.2% were obtained, meeting the standards of high hemocompatibility and low cytotoxicity for vascular graft material. The results are promising for further development toward vascular graft application.

Keywords: chitosan; collagen; electrospinning; poly L-lactic acid; tube; vascular graft.