Forecasting the Reduction in Urban Air Pollution by Expansion of Market Shares of Eco-Friendly Vehicles: A Focus on Seoul, Korea

Int J Environ Res Public Health. 2022 Nov 19;19(22):15314. doi: 10.3390/ijerph192215314.

Abstract

Due to global climate change, various countries have agreed upon the use of conventions. In this study, the eco-friendly vehicular policy on carbon neutrality implemented in Seoul, Korea, was examined. To this end, various policy-based scenarios were set, and the changes in automotive exhaust gas emissions were evaluated and compared. The evaluation method combined macroscopic and microscopic emission models as its analysis framework. Micro-traffic data available in Korea were used for analyses, and the results for all autonomous districts were derived to cover the entire area of Seoul. The findings confirmed that the most effective measure is the initial replacement of old, mid-size, or large diesel passenger cars with eco-friendly vehicles (Middle-sized: Scenario 2-1 5.52%, Scenario 2-2 6.86%, Scenario 3-1 80.93%, and Scenario 3-2 83.98%). The replacement of old vehicles exhibited the highest effect in all tested scenarios, while the initial replacement of diesel vehicles was more effective than the replacement of gasoline and liquified petroleum gas vehicles (Diesel: Scenario2-1 6.64%, Scenario 2-2 8.21%, Scenario3-1 86.23%, and Scenario 3-2 90.51%). Among the autonomous districts of Seoul, the Gangnam-gu area exhibited the largest emission-reduced effect among all the tested scenarios (Gangnam-gu: Scenario 2-1 5.80%, Scenario 2-2 6.74%, Scenario 3-1 80.44%, and Scenario 3-2 82.62%). Overall, it was demonstrated that the findings of this study may have significant policy implications in terms of urban emission changes pertaining to transportation.

Keywords: air quality; carbon neutrality; eco-friendly vehicles; electric vehicles; exhaust gases; hydrogen vehicles; vehicular policy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • Air Pollution* / prevention & control
  • Republic of Korea
  • Seoul
  • Vehicle Emissions / analysis

Substances

  • Air Pollutants
  • Vehicle Emissions

Grants and funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1F1A1045823).