Mechanical stability of trees under static loads

Am J Bot. 2006 Oct;93(10):1501-11. doi: 10.3732/ajb.93.10.1501.

Abstract

Wind affects the structure and functioning of a forest ecosystem continuously and may cause significant economic loss in managed forests by reducing the yield of recoverable timber, increasing the cost of unscheduled thinning and clear-cuttings, and creating problems in forestry planning. Furthermore, broken and uprooted trees within the forest are subject to insect attack and may provide a suitable breeding substrate, endangering the remaining trees. Therefore, an improved understanding of the processes behind the occurrence of wind-induced damage is of interest to many forest ecologists, but may also help managers of forest resources to make appropriate management decisions related to risk management. Using fundamental physics, empirical experiments, and mechanistic model-based approaches in interaction, we can study the susceptibility of tree stands to wind damage as affected by the wind and site and tree/stand characteristics and management. Such studies are not possible based on statistical approaches alone, which are not able to define the causal links between tree parameters and susceptibility to wind damage. The aim of this paper is to review the recent work done related to tree-pulling and wind tunnel experiments and mechanistic modeling approaches to increase our understanding of the mechanical stability of trees under static loading.