Unveiling the Stereoselectivity and Regioselectivity of the [3+2] Cycloaddition Reaction between N-methyl-C-4-methylphenyl-nitrone and 2-Propynamide from a MEDT Perspective

Int J Mol Sci. 2023 May 22;24(10):9102. doi: 10.3390/ijms24109102.

Abstract

[3+2] cycloaddition reactions play a crucial role in synthesizing complex organic molecules and have significant applications in drug discovery and materials science. In this study, the [3+2] cycloaddition (32CA) reactions of N-methyl-C-4-methyl phenyl-nitrone 1 and 2-propynamide 2, which have not been extensively studied before, were investigated using molecular electron density theory (MEDT) at the B3LYP/6-311++G(d,p) level of theory. According to an electron localization function (ELF) study, N-methyl-C-4-methyl phenyl-nitrone 1 is a zwitterionic species with no pseudoradical or carbenoid centers. Conceptual density functional theory (CDFT) indices were used to predict the global electronic flux from the strong nucleophilic N-methyl-C-4-methyl phenylnitrone 1 to the electrophilic 2-propynamide 2 functions. The 32CA reactions proceeded through two pairs of stereo- and regioisomeric reaction pathways to generate four different products: 3, 4, 5, and 6. The reaction pathways were irreversible owing to their exothermic characters: -136.48, -130.08, -130.99, and -140.81 kJ mol-1, respectively. The enthalpy of the 32CA reaction leading to the formation of cycloadduct 6 was lower compared with the other path owing to a slight increase in its polar character, observed through the global electron density transfer (GEDT) during the transition states and along the reaction path. A bonding evolution theory (BET) analysis showed that these 32CA reactions proceed through the coupling of pseudoradical centers, and the formation of new C-C and C-O covalent bonds did not begin in the transition states.

Keywords: [3+2] cycloaddition reactions; electron localization function; molecular electron density theory; nitrone.

MeSH terms

  • Cycloaddition Reaction
  • Electrons*
  • Models, Molecular
  • Nitrogen Oxides*

Substances

  • nitrones
  • Nitrogen Oxides

Grants and funding

The stage of H.A.M.-S. at the University of Valencia has been funded by the Ministry of Higher Education and Scientific Research, Kurdistan Regional Government.