Experimental investigation of forced convection heat transfer for different models of PPFHS heatsinks with different fin-pin spacing

Heliyon. 2023 Dec 6;10(1):e23373. doi: 10.1016/j.heliyon.2023.e23373. eCollection 2024 Jan 15.

Abstract

Cooling of electronic components is one of the most important concerns of manufacturers. Using heatsinks with different models is one of the recommended methods for cooling. To compare 12 types of heatsinks, including 3 types of fin-pin heatsinks with rectangular pins, 3 types of fin-pin heatsinks with circular pins, 3 types of fin-pin heatsinks with conical pins, and 3 types of simple fin heatsinks in 5, 7, and 9 fin types regarding forced displacement heat transfer, an experiment was conducted. A special setup designed and built for these types of heatsinks was used to conduct the test. The setup had dimensions of 100 cm × 12 cm x 3 cm with an opening of 120 cm × 120 cm for placing a fan to create airflow with variable speeds and a place for placing the heatsink at the end of the wind tunnel under variable temperatures. The test results showed that the maximum error in the two experimental tests was 6 %. Also, the results showed that in all 4 types of heatsinks, 7-fin pin types had 4 to 20% lower thermal resistance and 20 to 100% higher convection heat transfer coefficient compared to the 5- and 9-fin pin types respectively. When comparing the heatsinks with the same number of fins, it was observed that the 7 and 9-fin types of heatsinks with conical fins have lower thermal resistance and higher convection heat transfer coefficient than other types of heatsinks with the same number of fins, The conical fins having more than 81 % convection heat transfer coefficient compared to the plate fin heatsink. It was also observed that in the 5-pin fin heatsink design, the plate-fin heat sink had the lowest amount of heat resistance due to its higher surface area with the flowing air current.

Keywords: Displacement heat transfer coefficient; Thermal boundary layer; Thermal resistance.