Excellent Tribological Properties of Lower Reduced Graphene Oxide Content Copper Composite by Using a One-Step Reduction Molecular-Level Mixing Process

Materials (Basel). 2018 Apr 13;11(4):600. doi: 10.3390/ma11040600.

Abstract

Reduced graphene oxide (RGO) composite copper matrix powders were fabricated successfully by using a modified molecular-level mixing (MLM) method. Divalent copper ions (Cu2+) were adsorbed in oxygen functional groups of graphene oxide (GO) as a precursor, then were reduced simultaneously by one step chemical reduction. RGO showed a distribution converting from a random to a three-dimensional network in the copper matrix when its content increased to above 1.0 wt.% The tribological tests indicated that the friction coefficient of the composite with 1.0 wt.% RGO decreased markedly from 0.6 to 0.07 at an applied load of 10 N, and the wear rate was about one-third of pure copper. The excellent tribological properties were attributed to a three-dimensional and uniform distribution, which contributes to improving toughness and adhesion strength.

Keywords: copper; network structure; reduced graphene oxide; tribological properties.